Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Noninvasive Analysis of Tree Stems by Electrical Resistivity Tomography: Unraveling the Effects of Temperature, Water Status, and Electrode Installation.

Identifieur interne : 000820 ( Main/Exploration ); précédent : 000819; suivant : 000821

Noninvasive Analysis of Tree Stems by Electrical Resistivity Tomography: Unraveling the Effects of Temperature, Water Status, and Electrode Installation.

Auteurs : Andrea Ganthaler [Autriche] ; Julia Sailer [Autriche] ; Andreas B R [Autriche] ; Adriano Losso [Autriche] ; Stefan Mayr [Autriche]

Source :

RBID : pubmed:31798610

Abstract

The increasing demand for tree and forest health monitoring due to ongoing climate change requires new future-oriented and nondestructive measurement techniques. Electrical resistivity (ER) tomography represents a promising and innovative approach, as it allows insights into living trees based on ER levels and ER cross-sectional distribution patterns of stems. However, it is poorly understood how external factors, such as temperature, tree water status, and electrode installation affect ER tomograms. In this study, ER measurements were carried out on three angiosperms (Betula pendula, Fagus sylvatica, Populus nigra) and three conifers (Larix decidua, Picea abies, Pinus cembra) exposed to temperatures between -10 and 30°C and to continuous dehydration down to -6.3 MPa in a laboratory experiment. Additionally, effects of removal of peripheral tissues (periderm, phloem, cambium) and electrode installation were tested. Temperature changes above the freezing point did not affect ER distribution patterns but average ER levels, which increased exponentially and about 2.5-fold from 30 to 0°C in all species. In contrast, freezing of stems caused a pronounced raise of ER, especially in peripheral areas. With progressive tree dehydration, average ER increased in all species except in B. pendula, and measured resistivities in the peripheral stem areas of both angiosperms and conifers were clearly linearly related to the tree water status. Removal of the periderm resulted in a slight decrease of high ER peaks. Installation of electrodes for a short period of 32-72 h before conducting the tomography caused small distortions in tomograms. Distortions became serious after long-term installation for several months, while mean ER was only slightly affected. The present study confirms that ER tomography of tree stems is sensitive to temperature and water status. Results help to improve ER tomogram interpretation and suggest that ER analyses may be suitable to nondestructively determinate the hydraulic status of trees. They thus provide a solid basis for further technological developments to enable presymptomatic detection of physiological stress in standing trees.

DOI: 10.3389/fpls.2019.01455
PubMed: 31798610
PubMed Central: PMC6865845


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Noninvasive Analysis of Tree Stems by Electrical Resistivity Tomography: Unraveling the Effects of Temperature, Water Status, and Electrode Installation.</title>
<author>
<name sortKey="Ganthaler, Andrea" sort="Ganthaler, Andrea" uniqKey="Ganthaler A" first="Andrea" last="Ganthaler">Andrea Ganthaler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, University of Innsbruck, Innsbruck, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany, University of Innsbruck, Innsbruck</wicri:regionArea>
<wicri:noRegion>Innsbruck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sailer, Julia" sort="Sailer, Julia" uniqKey="Sailer J" first="Julia" last="Sailer">Julia Sailer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, University of Innsbruck, Innsbruck, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany, University of Innsbruck, Innsbruck</wicri:regionArea>
<wicri:noRegion>Innsbruck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="B R, Andreas" sort="B R, Andreas" uniqKey="B R A" first="Andreas" last="B R">Andreas B R</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, University of Innsbruck, Innsbruck, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany, University of Innsbruck, Innsbruck</wicri:regionArea>
<wicri:noRegion>Innsbruck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Losso, Adriano" sort="Losso, Adriano" uniqKey="Losso A" first="Adriano" last="Losso">Adriano Losso</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, University of Innsbruck, Innsbruck, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany, University of Innsbruck, Innsbruck</wicri:regionArea>
<wicri:noRegion>Innsbruck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mayr, Stefan" sort="Mayr, Stefan" uniqKey="Mayr S" first="Stefan" last="Mayr">Stefan Mayr</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, University of Innsbruck, Innsbruck, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany, University of Innsbruck, Innsbruck</wicri:regionArea>
<wicri:noRegion>Innsbruck</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31798610</idno>
<idno type="pmid">31798610</idno>
<idno type="doi">10.3389/fpls.2019.01455</idno>
<idno type="pmc">PMC6865845</idno>
<idno type="wicri:Area/Main/Corpus">000578</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000578</idno>
<idno type="wicri:Area/Main/Curation">000578</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000578</idno>
<idno type="wicri:Area/Main/Exploration">000578</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Noninvasive Analysis of Tree Stems by Electrical Resistivity Tomography: Unraveling the Effects of Temperature, Water Status, and Electrode Installation.</title>
<author>
<name sortKey="Ganthaler, Andrea" sort="Ganthaler, Andrea" uniqKey="Ganthaler A" first="Andrea" last="Ganthaler">Andrea Ganthaler</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, University of Innsbruck, Innsbruck, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany, University of Innsbruck, Innsbruck</wicri:regionArea>
<wicri:noRegion>Innsbruck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sailer, Julia" sort="Sailer, Julia" uniqKey="Sailer J" first="Julia" last="Sailer">Julia Sailer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, University of Innsbruck, Innsbruck, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany, University of Innsbruck, Innsbruck</wicri:regionArea>
<wicri:noRegion>Innsbruck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="B R, Andreas" sort="B R, Andreas" uniqKey="B R A" first="Andreas" last="B R">Andreas B R</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, University of Innsbruck, Innsbruck, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany, University of Innsbruck, Innsbruck</wicri:regionArea>
<wicri:noRegion>Innsbruck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Losso, Adriano" sort="Losso, Adriano" uniqKey="Losso A" first="Adriano" last="Losso">Adriano Losso</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, University of Innsbruck, Innsbruck, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany, University of Innsbruck, Innsbruck</wicri:regionArea>
<wicri:noRegion>Innsbruck</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mayr, Stefan" sort="Mayr, Stefan" uniqKey="Mayr S" first="Stefan" last="Mayr">Stefan Mayr</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Botany, University of Innsbruck, Innsbruck, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Botany, University of Innsbruck, Innsbruck</wicri:regionArea>
<wicri:noRegion>Innsbruck</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The increasing demand for tree and forest health monitoring due to ongoing climate change requires new future-oriented and nondestructive measurement techniques. Electrical resistivity (ER) tomography represents a promising and innovative approach, as it allows insights into living trees based on ER levels and ER cross-sectional distribution patterns of stems. However, it is poorly understood how external factors, such as temperature, tree water status, and electrode installation affect ER tomograms. In this study, ER measurements were carried out on three angiosperms (
<i>Betula pendula</i>
,
<i>Fagus sylvatica</i>
,
<i>Populus nigra</i>
) and three conifers (
<i>Larix decidua</i>
,
<i>Picea abies</i>
,
<i>Pinus cembra</i>
) exposed to temperatures between -10 and 30°C and to continuous dehydration down to -6.3 MPa in a laboratory experiment. Additionally, effects of removal of peripheral tissues (periderm, phloem, cambium) and electrode installation were tested. Temperature changes above the freezing point did not affect ER distribution patterns but average ER levels, which increased exponentially and about 2.5-fold from 30 to 0°C in all species. In contrast, freezing of stems caused a pronounced raise of ER, especially in peripheral areas. With progressive tree dehydration, average ER increased in all species except in
<i>B. pendula</i>
, and measured resistivities in the peripheral stem areas of both angiosperms and conifers were clearly linearly related to the tree water status. Removal of the periderm resulted in a slight decrease of high ER peaks. Installation of electrodes for a short period of 32-72 h before conducting the tomography caused small distortions in tomograms. Distortions became serious after long-term installation for several months, while mean ER was only slightly affected. The present study confirms that ER tomography of tree stems is sensitive to temperature and water status. Results help to improve ER tomogram interpretation and suggest that ER analyses may be suitable to nondestructively determinate the hydraulic status of trees. They thus provide a solid basis for further technological developments to enable presymptomatic detection of physiological stress in standing trees.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31798610</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Noninvasive Analysis of Tree Stems by Electrical Resistivity Tomography: Unraveling the Effects of Temperature, Water Status, and Electrode Installation.</ArticleTitle>
<Pagination>
<MedlinePgn>1455</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.01455</ELocationID>
<Abstract>
<AbstractText>The increasing demand for tree and forest health monitoring due to ongoing climate change requires new future-oriented and nondestructive measurement techniques. Electrical resistivity (ER) tomography represents a promising and innovative approach, as it allows insights into living trees based on ER levels and ER cross-sectional distribution patterns of stems. However, it is poorly understood how external factors, such as temperature, tree water status, and electrode installation affect ER tomograms. In this study, ER measurements were carried out on three angiosperms (
<i>Betula pendula</i>
,
<i>Fagus sylvatica</i>
,
<i>Populus nigra</i>
) and three conifers (
<i>Larix decidua</i>
,
<i>Picea abies</i>
,
<i>Pinus cembra</i>
) exposed to temperatures between -10 and 30°C and to continuous dehydration down to -6.3 MPa in a laboratory experiment. Additionally, effects of removal of peripheral tissues (periderm, phloem, cambium) and electrode installation were tested. Temperature changes above the freezing point did not affect ER distribution patterns but average ER levels, which increased exponentially and about 2.5-fold from 30 to 0°C in all species. In contrast, freezing of stems caused a pronounced raise of ER, especially in peripheral areas. With progressive tree dehydration, average ER increased in all species except in
<i>B. pendula</i>
, and measured resistivities in the peripheral stem areas of both angiosperms and conifers were clearly linearly related to the tree water status. Removal of the periderm resulted in a slight decrease of high ER peaks. Installation of electrodes for a short period of 32-72 h before conducting the tomography caused small distortions in tomograms. Distortions became serious after long-term installation for several months, while mean ER was only slightly affected. The present study confirms that ER tomography of tree stems is sensitive to temperature and water status. Results help to improve ER tomogram interpretation and suggest that ER analyses may be suitable to nondestructively determinate the hydraulic status of trees. They thus provide a solid basis for further technological developments to enable presymptomatic detection of physiological stress in standing trees.</AbstractText>
<CopyrightInformation>Copyright © 2019 Ganthaler, Sailer, Bär, Losso and Mayr.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ganthaler</LastName>
<ForeName>Andrea</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of Innsbruck, Innsbruck, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sailer</LastName>
<ForeName>Julia</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of Innsbruck, Innsbruck, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bär</LastName>
<ForeName>Andreas</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of Innsbruck, Innsbruck, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Losso</LastName>
<ForeName>Adriano</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of Innsbruck, Innsbruck, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mayr</LastName>
<ForeName>Stefan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of Innsbruck, Innsbruck, Austria.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">angiosperms</Keyword>
<Keyword MajorTopicYN="N">conifers</Keyword>
<Keyword MajorTopicYN="N">imaging</Keyword>
<Keyword MajorTopicYN="N">nondestructive</Keyword>
<Keyword MajorTopicYN="N">ring electrode array</Keyword>
<Keyword MajorTopicYN="N">tree assessment</Keyword>
<Keyword MajorTopicYN="N">water status</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31798610</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.01455</ArticleId>
<ArticleId IdType="pmc">PMC6865845</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1988 Nov;88(3):581-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1998 Jun;88(6):494-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Jul;24(7):853-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Feb;33(2):187-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23329335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Nov 29;491(7426):752-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23172141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(4):839-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17229759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2019 Jul 18;39(7):1262-1271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31070766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2018 Feb 1;38(2):287-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28981912</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Autriche</li>
</country>
</list>
<tree>
<country name="Autriche">
<noRegion>
<name sortKey="Ganthaler, Andrea" sort="Ganthaler, Andrea" uniqKey="Ganthaler A" first="Andrea" last="Ganthaler">Andrea Ganthaler</name>
</noRegion>
<name sortKey="B R, Andreas" sort="B R, Andreas" uniqKey="B R A" first="Andreas" last="B R">Andreas B R</name>
<name sortKey="Losso, Adriano" sort="Losso, Adriano" uniqKey="Losso A" first="Adriano" last="Losso">Adriano Losso</name>
<name sortKey="Mayr, Stefan" sort="Mayr, Stefan" uniqKey="Mayr S" first="Stefan" last="Mayr">Stefan Mayr</name>
<name sortKey="Sailer, Julia" sort="Sailer, Julia" uniqKey="Sailer J" first="Julia" last="Sailer">Julia Sailer</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000820 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000820 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31798610
   |texte=   Noninvasive Analysis of Tree Stems by Electrical Resistivity Tomography: Unraveling the Effects of Temperature, Water Status, and Electrode Installation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31798610" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020